论文标题
扩散波现象和$ l^p $衰减估计可压缩粘弹性系统的解决方案
Diffusion wave phenomena and $L^p$ decay estimates of solutions of compressible viscoelastic system
论文作者
论文摘要
我们考虑了描述整个空间中可压缩粘弹性流体运动的方程系统。我们调查了围绕一动不动状态的解决方案的较大时间行为,并以$ 1 <p \ leq \ infty $的$ l^p $衰减估计值,前提是初始数据足够接近一动不动的状态。此外,我们阐明了由声波和弹性剪切波引起的扩散波现象。
We consider the system of equations describing motion of compressible viscoelastic fluids in a whole space. We investigate the large time behavior of solutions around a motionless state, and obtain the $L^p$ decay estimates of solutions for $1<p\leq\infty$, provided that the initial data is sufficiently close to the motionless state. In addition, we clarify the diffusion wave phenomena caused by the sound wave and the elastic shear wave.