论文标题
Josephson偶联使用超薄batio $ _3 $障碍
Josephson coupling in high-T$_c$ superconducting junctions using ultra-thin BaTiO$_3$ barriers
论文作者
论文摘要
我们研究使用GDBA垂直堆叠的Josephson隧道连接的电气传输,$ _2 $ CU $ _3 $ o $ $ _ {7-D} $ electrodes和Batio $ _3 $ _3 $ _3 $障碍,其厚度在1 nm和3 nm之间。使用GDBA $ _2 $ _2 $ _2 $ _3 $ _3 $ _ {7-d} $(16 nm) / batio $ _3 $ _3 $ _3 $(1-3 nm) / gdba $ _2 $ _2 $ _3 $ _3 $ _3 $ _-1 16-d-d-d-d-d tr,使用GDBA $ _2 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _2 $ _2 $ _2 $ _3 $ _3 $ _ {7-d-在(100)srtio $ _3 $上溅起。低温下的电流 - 电压测量表明,与Batio $ _3 $ 1 nm和2 nm的batio $ _3 $障碍的连接处的Josephson耦合。减少屏障厚度波纹管的临界厚度似乎抑制了Batio $ _3 $的铁电性质。约瑟夫森耦合温度大大降低,对于增加屏障厚度,这可能与抑制底部GDBA $ _2 $ _2 $ cu $ _3 $ _3 $ o $ $ _ {7-d} $的超导临界温度有关。约瑟夫森(Josephson)的能量为$ \ $ \ $ \ $ \ $ 1.5 mv,$ \ $ \ $ \ $ \ $ 7.5 mv的batio $ _3 $ _3 $壁垒为1 nm和2 nm。由于屏障的结构不均匀性,Fraunhofer模式与临界电流的波动一致。我们的结果对于使用高t $ _C $电极的能量差异的电极比通常存在的低温超导体中通常存在的高电极要高得多。
We study the electrical transport of vertically-stacked Josephson tunnel junctions using GdBa$_2$Cu$_3$O$_{7-d}$ electrodes and a BaTiO$_3$ barrier with thicknesses between 1 nm and 3 nm. The junctions with an area of 20 mm x 20 mm were fabricated combining optical lithography and ion etching using GdBa$_2$Cu$_3$O$_{7-d}$ (16 nm) / BaTiO$_3$ (1 - 3 nm) / GdBa$_2$Cu$_3$O$_{7-d}$ (16 nm) trilayers growth by sputtering on (100) SrTiO$_3$. Current-voltage measurements at low temperatures show a Josephson coupling for junctions with BaTiO$_3$ barriers of 1 nm and 2 nm. Reducing the barrier thickness bellow a critical thickness seems to suppress the ferroelectric nature of the BaTiO$_3$. The Josephson coupling temperature is strongly reduced for increasing barrier thicknesses, which may be related to the suppression of the superconducting critical temperature in the bottom GdBa$_2$Cu$_3$O$_{7-d}$ due to stress. The Josephson energies at 12 K are of $\approx$ 1.5 mV and $\approx$ 7.5 mV for BaTiO$_3$ barriers of 1 nm and 2 nm. Fraunhofer patterns are consistent with fluctuations in the critical current due to structural inhomogeneities in the barriers. Our results are promising for the development of Josephson junctions using high-T$_c$ electrodes with energy gaps much higher than those usually present in conventional low-temperature superconductors.