论文标题
朝向湍流理论
Towards Field Theory of Turbulence
论文作者
论文摘要
我们重新审视了三维湍流中涡度的固定分布的问题。使用CLEBSCH变量,我们在Euler方程的固定溶液中构建了一个明确的不变度量,并具有固定能量/耗散的额外条件。研究了围绕大环的大循环的渐近溶液作为WKB极限(Instanton)。 clebsch田地在最小的表面不连续,循环呈正常涡度保持连续。还有一个与$δ(z)$成比例的奇异切向涡度组件,其中$ z $是正常方向。产生的流量具有非平凡的拓扑结构。这种奇异的切线涡度成分从通量下降,但主导了能量耗散以及速度场的生物 - 萨瓦特积分。与在循环方程中假定的相比,这使我们达到了一个修改的方程式,用于沿着最小表面的涡度分布,在循环方程中没有注意到单数项。除了描述最小表面上的涡度分布外,该方法还为循环PDF提供了公式,这在环方程中难以捉摸。
We revisit the problem of stationary distribution of vorticity in three-dimensional turbulence. Using Clebsch variables we construct an explicit invariant measure on stationary solutions of Euler equations with the extra condition of fixed energy flow/dissipation. The asymptotic solution for large circulation around large loops is studied as a WKB limit (instanton). The Clebsch fields are discontinuous across minimal surface bounded by the loop, with normal vorticity staying continuous. There is also a singular tangential vorticity component proportional to $δ(z)$ where $z$ is the normal direction. Resulting flow has nontrivial topology. This singular tangent vorticity component drops from the flux but dominates the energy dissipation as well as the Biot-Savart integral for velocity field. This leads us to a modified equation for vorticity distribution along the minimal surface compared to that assumed in a loop equations, where the singular terms were not noticed. In addition to describing vorticity distribution over the minimal surface, this approach provides formula for the circulation PDF, which was elusive in the Loop Equations.