论文标题
具有Lorentz-Sobolev条件的多线性荷尔曼德乘数定理
The multilinear Hormander multiplier theorem with a Lorentz-Sobolev condition
论文作者
论文摘要
在本文中,我们提供了具有Lorentz-Sobolev空间条件的Hörmander乘数定理的多线性版本。这项工作是由第一作者和斯拉维科瓦的最新结果激发的,在该结果中,获得了古典Hörmander乘数定理的类似版本。此版本在许多方面都很清晰,并减少了定理语句中出现的索引数量。作为线性案例的自然扩展,在这项工作中,我们证明,如果$ mn/2 <s <mn $,则$ \ big \ big \ big \ vertt_σ(f_1,\ dots,f_m)\ big big \ vert_ {l^p((((\ mathbb {r})\ simemim \ sup_ {k \ in \ mathbb {z}}} \ big \ vert σ(2^k \; \ vec {\ cdot} \;)\ wideHat {ψ^{(m)}}} \ big \ big \ vert_ {l_ {l_ {s}^{mn/s,1}(\ Mathbb {\ Mathbb {r}^{mn}^{mn}}} \ vert f_1 \ vert_ {l^{p_1}(((\ Mathbb {r})^n)}}} \ cdots \ vert f_m \ vert_ {l^{p_m}((\ Mathbb {r}) 对于某些$ p,p_1,\ dots,p_m $,$ 1/p = 1/p_1+\ dots+1/p_m $。我们还表明,从某种意义上说,上面的估计值是清晰的,从lorentz-sobolev space $ l_s^{mn/s,1} $无法用$ l_ {s}^{r,q} $代替,$ r <mn/s $,$ 0 <q \ q \ leq \ leq \ leq \ leq \ leq \ infty $ l_s $ l_s $ n/q} $ n/q} $ n/q},
In this article, we provide a multilinear version of the Hörmander multiplier theorem with a Lorentz-Sobolev space condition. The work is motivated by the recent result of the first author and Slavíková where an analogous version of classical Hörmander multiplier theorem was obtained; this version is sharp in many ways and reduces the number of indices that appear in the statement of the theorem. As a natural extension of the linear case, in this work, we prove that if $mn/2<s<mn$, then $$ \big\Vert T_σ(f_1,\dots,f_m)\big\Vert_{L^p((\mathbb{R})^n)}\lesssim \sup_{k\in\mathbb{Z}}\big\Vert σ(2^k\;\vec{\cdot}\;)\widehat{Ψ^{(m)}}\big\Vert_{L_{s}^{mn/s,1}(\mathbb{R}^{mn})}\Vert f_1\Vert_{L^{p_1}((\mathbb{R})^n)}\cdots \Vert f_m\Vert_{L^{p_m}((\mathbb{R})^n)} $$ for certain $p,p_1,\dots,p_m$ with $1/p=1/p_1+\dots+1/p_m$. We also show that the above estimate is sharp, in the sense that the Lorentz-Sobolev space $L_s^{mn/s,1}$ cannot be replaced by $L_{s}^{r,q}$ for $r<mn/s$, $0<q\leq \infty$, or by $L_s^{mn/s,q}$ for $q>1$.