论文标题

在$α$ -ADJACENCY的图形和Zagreb索引

On $α$-adjacency energy of graphs and Zagreb index

论文作者

Pirzada, S., Rather, Bilal A., Ganie, Hilal A., Shaban, Rezwan ul

论文摘要

令$ a(g)$为邻接矩阵,$ d(g)$是简单连接的图形$ g $的顶点度的对角线矩阵。 Nikiforov将$ d(g)$和$ a(g)$的矩阵$a_α(g)$定义为$a_α(g)=αd(g)+(g)+(1-α)a(g)$,价格为$ 0 \ leqleqα\ leq 1 $。如果$ρ_{1} \ geqρ_{2} \ geq \ dots \ geqρ_{n} $是$a_α(g)$的特征(我们称之为$α$α$ -AdjAcency eigenvalues of $ g $) $ e^{a_α}(g)= \ sum_ {i = 1}^{n} \ left |ρ_i-\ frac {2αm} {n} {n} \ right | $,其中$ n $是订单,$ m $是$ g $的大小。我们以$ n $,$ n $,$ m $和ZAGREB索引$ zg(g)$相关的结构相关的$ n $,尺寸$ n $,$ e^{a_α}(g)$的上限和下限。此外,我们表征了达到这些边界的极端图。

Let $A(G)$ be the adjacency matrix and $D(G)$ be the diagonal matrix of the vertex degrees of a simple connected graph $G$. Nikiforov defined the matrix $A_α(G)$ of the convex combinations of $D(G)$ and $A(G)$ as $A_α(G)=αD(G)+(1-α)A(G)$, for $0\leq α\leq 1$. If $ ρ_{1}\geq ρ_{2}\geq \dots \geq ρ_{n}$ are the eigenvalues of $A_α(G)$ (which we call $α$-adjacency eigenvalues of $G$), the $ α$-adjacency energy of $G$ is defined as $E^{A_α}(G)=\sum_{i=1}^{n}\left|ρ_i-\frac{2αm}{n}\right|$, where $n$ is the order and $m$ is the size of $G$. We obtain the upper and lower bounds for $E^{A_α}(G) $ in terms of order $n$, size $m$ and Zagreb index $Zg(G)$ associated to the structure of $G$. Further, we characterize the extremal graphs attaining these bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源