论文标题

在被动光网络上嵌入物联网中的节能神经网络

Energy Efficient Neural Network Embedding in IoT over Passive Optical Networks

论文作者

Alenazi, Mohammed Moawad, Yosuf, Barzan A., El-Gorashi, Taisir, Elmirghani, Jaafar M. H.

论文摘要

在不久的将来,预计基于物联网的应用程序服务将收集大量的数据,预计将执行复杂和多样化的任务。机器学习算法(例如人工神经网络(ANN))越来越多地用于智能环境中,以基于一组调整参数作为输入来预测给定问题的输出。为此,我们为基于物联网的智能房屋提供了节能神经网络(EE-NN)服务嵌入框架。开发的框架考虑了面向服务的体系结构(SOA)的想法,以为NN的多个复杂模块提供服务抽象,该模块可以由较高的应用程序层使用。我们利用混合整数线性编程(MILP)来制定嵌入问题,以最大程度地减少网络和处理的总功耗。 MILP模型的结果表明,由于物联网设备的容量有限,我们优化的NN可以通过嵌入物联网设备中的处理模块和在雾节中的72%来节省86%。

In the near future, IoT based application services are anticipated to collect massive amounts of data on which complex and diverse tasks are expected to be performed. Machine learning algorithms such as Artificial Neural Networks (ANN) are increasingly used in smart environments to predict the output for a given problem based on a set of tuning parameters as the input. To this end, we present an energy efficient neural network (EE-NN) service embedding framework for IoT based smart homes. The developed framework considers the idea of Service Oriented Architecture (SOA) to provide service abstraction for multiple complex modules of a NN which can be used by a higher application layer. We utilize Mixed Integer Linear Programming (MILP) to formulate the embedding problem to minimize the total power consumption of networking and processing simultaneously. The results of the MILP model show that our optimized NN can save up to 86% by embedding processing modules in IoT devices and up to 72% in fog nodes due to the limited capacity of IoT devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源