论文标题
自我增强方向性会产生Lévy步行,而无需幂律假设
Self-reinforcing directionality generates Lévy walks without the power-law assumption
论文作者
论文摘要
我们引入了一个持续的随机步行模型,具有有限的速度和自我增强的方向性,该模型解释了指数分布的方式如何自我组织到Chen等人在主动内部运输中观察到的截短的Lévy步道。 al。 [\ textit {nat。 Mat。},2015年]。我们在空间和时间上得出了非均匀性,即粒子位置的概率密度函数(PDF)的双曲线PDE。该PDF表现出超级未来性方案中的双峰密度(聚集现象),在经典的线性双曲线和莱维步行模型中未观察到。我们找到了第一和第二瞬间的确切解决方案,以及过渡到超级延伸的标准。
We introduce a persistent random walk model with finite velocity and self-reinforcing directionality, which explains how exponentially distributed runs self-organize into truncated Lévy walks observed in active intracellular transport by Chen et. al. [\textit{Nat. mat.}, 2015]. We derive the non-homogeneous in space and time, hyperbolic PDE for the probability density function (PDF) of particle position. This PDF exhibits a bimodal density (aggregation phenomena) in the superdiffusive regime, which is not observed in classical linear hyperbolic and Lévy walk models. We find the exact solutions for the first and second moments and criteria for the transition to superdiffusion.