论文标题
模态逻辑中的从属代数
Subordination algebras in modal logic
论文作者
论文摘要
本文的目的是表明,即使模态(正常)逻辑的天然代数语义是模态代数,从而更一般的下属代数(粗略地说,非对称接触代数)也足够了 - 因此导致完整性结果。这激发了代数(在普遍代数的意义上)对那些是从属代数的关系结构的研究。
The aim of this paper is to show that even if the natural algebraic semantic for modal (normal) logic is modal algebra, the more general class of subordination algebras (roughly speaking, the non symmetric contact algebras) is adequate too - so leading to completeness results. This motivates for an algebraic (in the sense of universal algebra) study of those relational structures that are subordinate algebras.