论文标题

纵横交错的插入和删除校正代码

Criss-Cross Insertion and Deletion Correcting Codes

论文作者

Bitar, Rawad, Welter, Lorenz, Smagloy, Ilia, Wachter-Zeh, Antonia, Yaakobi, Eitan

论文摘要

本文研究了构建代码纠正阵列中缺失的问题。在此模型下,假定一个$ n \ times n $数组可以遇到行的删除行。这些删除错误称为$(t_r,t_c)$ - criss-cross删除如果$ t_r $ lows和$ t_c $列删除,而纠正这些删除模式的代码称为$(T_R,T_R,T_C)$ - Criss-Cross-Cross删除校正校正码。纵横交错的定义相似。 首先显示,当$ t_r = t_c $纠正纵横交错的删除和纵横交错的问题时,插入是等效的。本文的重点在于$(1,1)$ - Criss-Cross删除的情况。在$(1,1)$ - CRISS-CROSS缺失校正代码的基数(1,1)$(1,1)的非反应上限上显示,该代码确保了冗余至少$ 2N-3+2 \ log n $ bits。提出了带有存在编码和明确解码算法的代码构建。构造的冗余最多是$ 2N +4 \ log n +7 +2 \ log e $。提出了带有显式编码器和解码器的结构。显式编码器为构造添加了额外的$ 5 \ log n + 5 $冗余。

This paper studies the problem of constructing codes correcting deletions in arrays. Under this model, it is assumed that an $n\times n$ array can experience deletions of rows and columns. These deletion errors are referred to as $(t_r,t_c)$-criss-cross deletions if $t_r$ rows and $t_c$ columns are deleted, while a code correcting these deletion patterns is called a $(t_r,t_c)$-criss-cross deletion correction code. The definitions for criss-cross insertions are similar. It is first shown that when $t_r=t_c$ the problems of correcting criss-cross deletions and criss-cross insertions are equivalent. The focus of this paper lies on the case of $(1,1)$-criss-cross deletions. A non-asymptotic upper bound on the cardinality of $(1,1)$-criss-cross deletion correction codes is shown which assures that the redundancy is at least $2n-3+2\log n$ bits. A code construction with an existential encoding and an explicit decoding algorithm is presented. The redundancy of the construction is at most $2n+4 \log n + 7 +2 \log e$. A construction with explicit encoder and decoder is presented. The explicit encoder adds an extra $5\log n + 5$ bits of redundancy to the construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源