论文标题
$ l_ \ infty $ - 代数和膜Sigma模型
$L_\infty$-algebras and membrane sigma models
论文作者
论文摘要
膜Sigma模型已用于在非几何通量背景下进行封闭字符串的系统描述。特别是,相应作用功能的量规不变性条件与通量的比安奇身份有关。在这项贡献中,我们演示了如何以基础$ l_ \ infty $ -Algebra的同质关系来表达这些Bianchi身份。我们认为,可以将此结果用于理解双场理论的约束结构和相应的膜Sigma模型。
Membrane sigma-models have been used for the systematic description of closed strings in non-geometric flux backgrounds. In particular, the conditions for gauge invariance of the corresponding action functionals were related to the Bianchi identities for the fluxes. In this contribution we demonstrate how to express these Bianchi identities in terms of homotopy relations of the underlying $L_\infty$-algebra for the case of the Courant sigma-model. We argue that this result can be utilized in understanding the constraint structure of Double Field Theory and the corresponding membrane sigma-model.