论文标题

现实世界机器人增强学习的成分

The Ingredients of Real-World Robotic Reinforcement Learning

论文作者

Zhu, Henry, Yu, Justin, Gupta, Abhishek, Shah, Dhruv, Hartikainen, Kristian, Singh, Avi, Kumar, Vikash, Levine, Sergey

论文摘要

在许多情况下,强化学习对现实世界机器人技术的成功一直限于工具实验室的场景,通常需要艰苦的人类努力和监督才能实现持续学习。在这项工作中,我们讨论了一种机器人学习系统所需的要素,该系统可以通过在现实世界中收集的数据来不断地自主改进。我们建议使用灵巧的操纵作为我们的案例研究,对这种系统进行特殊的实例化。随后,我们调查了没有仪器学习时出现的许多挑战。在这种情况下,学习必须是可行的,没有手动设计的重置,仅使用板上的感知,而没有手工设计的奖励功能。我们针对这些挑战提出了简单且可扩展的解决方案,然后证明了我们提出的系统对一组灵敏的机器人操纵任务的功效,从而对与该学习范式相关的挑战进行了深入的分析。我们证明,我们的完整系统可以在不进行任何人工干预的情况下学习,并以三指手指的手获得各种基于视觉的技能。结果和视频可以在https://sites.google.com/view/realworld-rl/上找到

The success of reinforcement learning for real world robotics has been, in many cases limited to instrumented laboratory scenarios, often requiring arduous human effort and oversight to enable continuous learning. In this work, we discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world. We propose a particular instantiation of such a system, using dexterous manipulation as our case study. Subsequently, we investigate a number of challenges that come up when learning without instrumentation. In such settings, learning must be feasible without manually designed resets, using only on-board perception, and without hand-engineered reward functions. We propose simple and scalable solutions to these challenges, and then demonstrate the efficacy of our proposed system on a set of dexterous robotic manipulation tasks, providing an in-depth analysis of the challenges associated with this learning paradigm. We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand. Results and videos can be found at https://sites.google.com/view/realworld-rl/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源