论文标题

盒子中的细胞和超平面

Cells in the box and a hyperplane

论文作者

Barany, Imre, Frankl, Peter

论文摘要

众所周知,一条线最多可以与$ n \ times n $棋盘的$ 2N-1 $单元相交。在这里,我们考虑了高维版本:$ d $ d $ n \ times \ ldots \ times n $ box的$ d $ d $ d $ d $ n $ box中有多少个单元格可以相交?我们还证明了以下众所周知的事实的晶格类似物。如果$ k,l $是$ r^d $和$ k \ subset l $的凸体,则$ k $的表面积小于$ l $。

It is well-known that a line can intersect at most $2n-1$ cells of the $n \times n$ chessboard. Here we consider the high dimensional version: how many cells of the $d$-dimensional $n\times \ldots \times n$ box can a hyperplane intersect? We also prove the lattice analogue of the following well-known fact. If $K,L$ are convex bodies in $R^d$ and $K\subset L$, then the surface area of $K$ is smaller than that of $L$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源