论文标题
Vlasov-Maxwell方程的多维Hermite-Discostinunduled Galerkin方法
The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov-Maxwell equations
论文作者
论文摘要
我们讨论了三维Vlasov-Maxwell方程的数值模拟的光谱方法的开发,分析,实施和数值评估。该方法基于速度空间的光谱膨胀,具有不对称加权的赫尔米特函数。由时间相关的非线性方程组成的系统系统通过空间中的不连续的Galerkin(DG)方法离散,并通过使用显式runge-kutta积分器进行时间积分的线路方法。所得代码(称为光谱等离子体求解器(SPS-DG))成功地应用于标准等离子体物理基准,以证明其准确性,鲁棒性和并行可伸缩性。
We discuss the development, analysis, implementation, and numerical assessment of a spectral method for the numerical simulation of the three-dimensional Vlasov-Maxwell equations. The method is based on a spectral expansion of the velocity space with the asymmetrically weighted Hermite functions. The resulting system of time-dependent nonlinear equations is discretized by the discontinuous Galerkin (DG) method in space and by the method of lines for the time integration using explicit Runge-Kutta integrators. The resulting code, called Spectral Plasma Solver (SPS-DG), is successfully applied to standard plasma physics benchmarks to demonstrate its accuracy, robustness, and parallel scalability.