论文标题

固定kardar-parisi-zhang界面的普遍统计的直接证据

Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces

论文作者

Iwatsuka, Takayasu, Fukai, Yohsuke T., Takeuchi, Kazumasa A.

论文摘要

一维(1D)Kardar-Parisi-Zhang(KPZ)通用类的非平衡稳态是通过精确解决方案深入研究的,但到目前为止,尚未据报道其特征性统计特性的直接实验证据。这可以说是因为对于一个无限大的系统,需要无限的时间才能达到这样的固定状态并融合到预测的普遍行为。在这里,我们通过产生具有针对KPZ固定状态的远距离特性的初始条件,在生长液晶湍流的实验系统中阐明了这个问题。所得的界面波动清楚地显示了1D固定KPZ接口的特性,包括与Baik-Rains分布的收敛性。我们还确定了KPZ缩放定律的有限时间校正,结果证明在固定KPZ接口的直接测试中起着重要作用。这为探索固定KPZ接口的未解决特性的方式铺平了实验性的方法,这使得与非线性波动流体动力学和量子旋转链的连接可能相关,因为最近的研究揭示了与固定的KPZ的关系。

The nonequilibrium steady state of the one-dimensional (1D) Kardar-Parisi-Zhang (KPZ) universality class is studied in-depth by exact solutions, yet no direct experimental evidence of its characteristic statistical properties has been reported so far. This is arguably because, for an infinitely large system, infinitely long time is needed to reach such a stationary state and also to converge to the predicted universal behavior. Here we circumvent this problem in the experimental system of growing liquid-crystal turbulence, by generating an initial condition that possesses a long-range property expected for the KPZ stationary state. The resulting interface fluctuations clearly show characteristic properties of the 1D stationary KPZ interfaces, including the convergence to the Baik-Rains distribution. We also identify finite-time corrections to the KPZ scaling laws, which turn out to play a major role in the direct test of the stationary KPZ interfaces. This paves the way to explore unsolved properties of the stationary KPZ interfaces experimentally, making possible connections to nonlinear fluctuating hydrodynamics and quantum spin chains as recent studies unveiled relation to the stationary KPZ.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源