论文标题
具有集成电荷传感的硅-cmos 2x2量子点阵列的单电子操作
Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing
论文作者
论文摘要
硅互补金属氧化物 - 氧化物 - 氧化型(CMOS)技术可提供的高级纳米级集成为其在基于自旋的量子计算应用中的使用提供了关键的动机。 CMOS铸造兼容设备中量子点形成和自旋封锁的初步演示令人鼓舞,但结果尚未与大学制造的多门设计中所示的单个电子的控制相匹配。我们在这里表明,可以通过使用浮动门将其静电将其与在相邻纳米线中形成的远程单电子晶体管(Set)中静电相结合,从而在CMOS纳米线设备中形成的量子点的电荷状态。通过偏向远程集合的纳米线和对托管量子点的纳米线的偏见,我们可以控制地形成浮动门下的辅助量子点,从而实现了对四倍体(2x2)量子点阵列中电荷过渡的独立控制。该设备克服了基于通过点的隧道传输与测量相关的局限性,并允许感应所有电荷过渡,直到每个点中的最后一个电子。我们使用有效的质量理论来研究设备参数的必要优化,以实现基于自旋的量子计算所需的隧道速率。
The advanced nanoscale integration available in silicon complementary metal-oxide-semiconductor (CMOS) technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multi-gate designs. We show here that the charge state of quantum dots formed in a CMOS nanowire device can be sensed by using floating gates to electrostatically couple it to a remote single electron transistor (SET) formed in an adjacent nanowire. By biasing the nanowire and gates of the remote SET with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling the demonstration of independent control over charge transitions in a quadruple (2x2) quantum dot array. This device overcomes the limitations associated with measurements based on tunnelling transport through the dots and permits the sensing of all charge transitions, down to the last electron in each dot. We use effective mass theory to investigate the necessary optimization of the device parameters in order to achieve the tunnel rates required for spin-based quantum computation.