论文标题

与非均匀压缩的多EXIT神经网络的间歇性推断用于能量收集动力设备

Intermittent Inference with Nonuniformly Compressed Multi-Exit Neural Network for Energy Harvesting Powered Devices

论文作者

Wu, Yawen, Wang, Zhepeng, Jia, Zhenge, Shi, Yiyu, Hu, Jingtong

论文摘要

这项工作旨在通过将轻量级DNNS部署到EH功率的设备上,以实现持久,事件驱动的感应和决策能力(EH)能力设备。但是,收获的能量通常是弱且不可预测的,甚至轻巧的DNN都需要多个功率周期来完成一个推理。为了消除无限期的等待,以积累一个推理并优化准确性,我们开发了一种功率吸引力和出口引导的网络压缩算法,以压缩和部署多种外观神经网络,以根据可用的能量在执行过程中,以EH功率驱动的微控制器(MCUS)并进行选择。与最先进的技术相比,实验结果显示出卓越的准确性和潜伏期。

This work aims to enable persistent, event-driven sensing and decision capabilities for energy-harvesting (EH)-powered devices by deploying lightweight DNNs onto EH-powered devices. However, harvested energy is usually weak and unpredictable and even lightweight DNNs take multiple power cycles to finish one inference. To eliminate the indefinite long wait to accumulate energy for one inference and to optimize the accuracy, we developed a power trace-aware and exit-guided network compression algorithm to compress and deploy multi-exit neural networks to EH-powered microcontrollers (MCUs) and select exits during execution according to available energy. The experimental results show superior accuracy and latency compared with state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源