论文标题
晶体电场的有效点荷利分析 - 应用于稀土pyrochlores和三脚架kagome磁铁R3MG2SB3O14
Effective point-charge analysis of crystal electric fields -- application to rare-earth pyrochlores and tripod kagome magnets R3Mg2Sb3O14
论文作者
论文摘要
理解稀土化合物中集体磁现象的必不可少的步骤是确定由旋转轨道耦合和晶体场(CF)引起的空间 - 动态单离子特性。 CF Hamiltonian具有离散的能量光谱 - 可通过光谱探针(例如中子散射)访问 - 由反映磁性位点的点对称的许多独立参数控制。在低对称系统中确定这些参数通常具有挑战性。在这里,我们描述了一种使用可调节有效点付费分析CF激发光谱的通用方法。我们将我们的方法基于对pyrochlore稀土氧化物的现有中子散射测量结果,并获得了一个通用点荷格式模型,该模型描述了大型相关材料系列。我们将该模型适应新发现的三脚架kagome磁铁($ r_ {3} $ mg $ _2 $ _2 $ _2 $ sb $ _ {3} $ o $ $ $ _ {14} $,$ r $ = tb,ho,ho,er,yb)为此,我们为此报告宽带中弹性的中子散布光谱。使用可调节点付费分析这些数据可为每种化合物提供CF波函数。由此,我们计算出准确反映我们对粉末样品的测量的热磁特性,并预测伪旋转自由度的有效旋转磁张量 - 这是了解这些Kagome磁铁在低温下的外来集体特性的关键步骤。我们将方法的进一步应用于其他三脚架kagome材料和三角形稀土化合物$ r $ mggao $ _4 $($ r $ = yb,tm)。总体而言,这项研究建立了一种广泛适用的方法,用于预测基于可解释和可调节的有效点付费模型的稀土化合物的CF和单离子特性。
An indispensable step to understand collective magnetic phenomena in rare-earth compounds is the determination of spatially-anisotropic single-ion properties resulting from spin-orbit coupling and crystal field (CF). The CF Hamiltonian has a discrete energy spectrum -- accessible to spectroscopic probes such as neutron scattering -- controlled by a number of independent parameters reflecting the point-symmetry of the magnetic sites. Determining these parameters in low-symmetry systems is often challenging. Here, we describe a general method to analyze CF excitation spectra using adjustable effective point-charges. We benchmark our method to existing neutron-scattering measurements on pyrochlore rare-earth oxides and obtain a universal point-charge model that describes a large family of related materials. We adapt this model to the newly discovered tripod Kagome magnets ($R_{3}$Mg$_2$Sb$_{3}$O$_{14}$, $R$ = Tb, Ho, Er, Yb) for which we report broadband inelastic neutron-scattering spectra. Analysis of these data using adjustable point-charges yields the CF wave-functions for each compound. From this, we calculate thermomagnetic properties that accurately reflect our measurements on powder samples, and predict the effective gyromagnetic tensor for pseudo-spin degrees of freedom -- a crucial step to understand the exotic collective properties of these kagome magnets at low temperature. We present further applications of our method to other tripod kagome materials and triangular rare-earth compounds $R$MgGaO$_4$ ($R$ =Yb, Tm). Overall, this study establishes a widely applicable methodology to predict CF and single-ion properties of rare-earth compounds based on interpretable and adjustable models of effective point-charges.