论文标题

二分法和渐近相对次级的半神经

The semiring of dichotomies and asymptotic relative submajorization

论文作者

Perry, Christopher, Vrana, Péter, Werner, Albert H.

论文摘要

我们使用Strassen定理在预定的半段中的概括研究量子二分法和不对称区分性的资源理论。我们发现,在非正均二分法上定义的相对次缩合的渐近变体的特征是实值单调的,这些单调在张量产物下具有乘法性,并在直接总和下进行添加。这些强大的限制使我们能够对所有这些单调分类进行分类并明确描述所有这些单调,从而导致速率公式表示为涉及夹杂的rényi差异的优化。作为应用程序,我们在量子假设测试中给出了强烈的相反误差指数的新推导。

We study quantum dichotomies and the resource theory of asymmetric distinguishability using a generalization of Strassen's theorem on preordered semirings. We find that an asymptotic variant of relative submajorization, defined on unnormalized dichotomies, is characterized by real-valued monotones that are multiplicative under the tensor product and additive under the direct sum. These strong constraints allow us to classify and explicitly describe all such monotones, leading to a rate formula expressed as an optimization involving sandwiched Rényi divergences. As an application we give a new derivation of the strong converse error exponent in quantum hypothesis testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源