论文标题

从不完整的网络和非线性动力学推断学位

Inferring Degrees from Incomplete Networks and Nonlinear Dynamics

论文作者

Jiang, Chunheng, Gao, Jianxi, Magdon-Ismail, Malik

论文摘要

从观察到的数据中推断复杂网络的拓扑特征对于了解网络系统的动态行为至关重要,从互联网和万维网到生物网络和社交网络。先前的研究通常集中于基于结构的估计,以推断网络大小,程度分布,平均度等等。几乎没有努力试图从采样的诱导图中估算每个顶点的特定程度,这阻止了我们测量蛋白质网络中节点的致命性和社交网络中影响者的杀伤力。当前的方法在微小的采样诱导的图中极大地失败,需要特定的采样方法和大样本量。这些方法忽略了顶点状态的信息,代表网络系统的动力学行为,例如物种的生物量或基因的表达,这对于程度估计很有用。我们通过使用采样拓扑和顶点状态的信息来开发一个框架来推断单个顶点度来填补这一空白。我们将平均场理论与组合优化结合在一起,以学习顶点度。具有多种动力学的真实网络上的实验结果表明,我们的框架可以产生可靠的程度估计,并通过用我们的估计学位替换采样学位来大大改善现有的链接预测方法。

Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, which prevents us from measuring the lethality of nodes in protein networks and influencers in social networks. The current approaches dramatically fail for a tiny sampled induced graph and require a specific sampling method and a large sample size. These approaches neglect information of the vertex state, representing the dynamical behavior of the networked system, such as the biomass of species or expression of a gene, which is useful for degree estimation. We fill this gap by developing a framework to infer individual vertex degrees using both information of the sampled topology and vertex state. We combine the mean-field theory with combinatorial optimization to learn vertex degrees. Experimental results on real networks with a variety of dynamics demonstrate that our framework can produce reliable degree estimates and dramatically improve existing link prediction methods by replacing the sampled degrees with our estimated degrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源