论文标题

图形卷积子空间聚类:高光谱图像的强大子空间聚类框架

Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image

论文作者

Cai, Yaoming, Zhang, Zijia, Cai, Zhihua, Liu, Xiaobo, Jiang, Xinwei, Yan, Qin

论文摘要

由于HSI数据的高复杂性,高光谱图像(HSI)聚类是一项具有挑战性的任务。事实证明,子空间聚类对于利用数据点之间的内在关系具有强大的作用。尽管在HSI聚类中表现出色,但传统的子空间聚类方法通常会忽略数据之间固有的结构信息。在本文中,我们通过图形卷积重新访问子空间聚类,并提出了一个新颖的子空间聚类框架,称为图形卷积子空间聚类(GCSC),以用于鲁棒的HSI群集。具体而言,该框架将数据的自表达性属性重现到了非欧几里得域中,从而导致嵌入词典的图形更健壮。我们表明,传统的子空间聚类模型是我们框架和欧几里得数据的特殊形式。基于框架,我们进一步提出了两个新型的子空间聚类模型,即使用Frobenius Norm,即有效的GCSC(EGCSC)和有效的内核GCSC(EKGCSC)。两种模型都有全球最佳的封闭式解决方案,这使它们更易于实施,训练和应用。在三个流行的HSI数据集上进行的广泛实验表明,EGCSC和EKGCSC可以实现最新的聚类性能,并且极大地优于许多现有方法,这些方法具有明显的利润。

Hyperspectral image (HSI) clustering is a challenging task due to the high complexity of HSI data. Subspace clustering has been proven to be powerful for exploiting the intrinsic relationship between data points. Despite the impressive performance in the HSI clustering, traditional subspace clustering methods often ignore the inherent structural information among data. In this paper, we revisit the subspace clustering with graph convolution and present a novel subspace clustering framework called Graph Convolutional Subspace Clustering (GCSC) for robust HSI clustering. Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain, which results in a more robust graph embedding dictionary. We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data. Basing on the framework, we further propose two novel subspace clustering models by using the Frobenius norm, namely Efficient GCSC (EGCSC) and Efficient Kernel GCSC (EKGCSC). Both models have a globally optimal closed-form solution, which makes them easier to implement, train, and apply in practice. Extensive experiments on three popular HSI datasets demonstrate that EGCSC and EKGCSC can achieve state-of-the-art clustering performance and dramatically outperforms many existing methods with significant margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源