论文标题
在Lebesgue空间中具有潜力的Schrödinger运营商的回避估计值
Resolvent Estimates for Schrödinger Operators with Potentials in Lebesgue Spaces
论文作者
论文摘要
我们证明了在Lebesgue空间中具有潜力的Schrödinger运营商的欧几里得环境中的解决估计值:$-δ+V $。 Blair-Sire-Sogge已经获得了$(l^{2},l^{p})$估计值,但是我们使用其想法和kwon-lee的结果和方法将其结果扩展到其他$(l^{p},l^{q})$估计值,在Euclidean Smote上的kwon-Lee的结果和方法。
We prove resolvent estimates in the Euclidean setting for Schrödinger operators with potentials in Lebesgue spaces: $-Δ+V$. The $(L^{2}, L^{p})$ estimates were already obtained by Blair-Sire-Sogge, but we extend their result to other $(L^{p}, L^{q})$ estimates using their idea and the result and method of Kwon-Lee on non-uniform resolvent estimates in the Euclidean space.