论文标题
双重稳健的直接学习,以估计有条件的平均治疗效果
Doubly Robust Direct Learning for Estimating Conditional Average Treatment Effect
论文作者
论文摘要
推断异质治疗效果是科学和商业应用中的一个基本问题。在本文中,我们专注于估计条件平均治疗效果(CATE),即给定协变量治疗之间的条件平均结果的差异。传统上,基于Q学习的方法取决于处理和协变量的条件平均结果的估计。但是,它们被主要效应模型的错误指定。最近,已经提出了直接学习(D-学习)无模型规格的简单而灵活的一步方法。但是,对于倾向得分模型的错误指定,这些方法并不强大。我们为CATE估计,健壮的直接学习(RD学习)提出了一个新的框架,从而导致了对治疗效果的双重强大估计器。如果正确指定了主效应模型或倾向分数模型,则可以保证我们的CATE估计器的一致性。该框架可以在二进制和多臂设置中使用,并且足够通用以允许不同的功能空间并结合了不同的通用学习算法。作为副产品,假设已知倾向得分,我们为治疗效果开发了一种竞争性统计推断工具。我们使用线性和非线性设置下的风险范围为提出的方法提供了理论见解。我们提出的方法的有效性通过模拟研究和有关艾滋病临床试验研究的真实数据示例证明。
Inferring the heterogeneous treatment effect is a fundamental problem in the sciences and commercial applications. In this paper, we focus on estimating Conditional Average Treatment Effect (CATE), that is, the difference in the conditional mean outcome between treatments given covariates. Traditionally, Q-Learning based approaches rely on the estimation of conditional mean outcome given treatment and covariates. However, they are subject to misspecification of the main effect model. Recently, simple and flexible one-step methods to directly learn (D-Learning) the CATE without model specifications have been proposed. However, these methods are not robust against misspecification of the propensity score model. We propose a new framework for CATE estimation, robust direct learning (RD-Learning), leading to doubly robust estimators of the treatment effect. The consistency for our CATE estimator is guaranteed if either the main effect model or the propensity score model is correctly specified. The framework can be used in both the binary and the multi-arm settings and is general enough to allow different function spaces and incorporate different generic learning algorithms. As a by-product, we develop a competitive statistical inference tool for the treatment effect, assuming the propensity score is known. We provide theoretical insights to the proposed method using risk bounds under both linear and non-linear settings. The effectiveness of our proposed method is demonstrated by simulation studies and a real data example about an AIDS Clinical Trials study.