论文标题
基于彩票假说基于联邦学习中模型压缩的无监督预训练
Lottery Hypothesis based Unsupervised Pre-training for Model Compression in Federated Learning
论文作者
论文摘要
联合学习(FL)使神经网络(NN)能够使用移动设备上的隐私敏感数据进行培训,同时保留其本地存储的所有数据。但是,FL要求移动设备执行繁重的通信和计算任务,即要求设备上传和下载大容量NN型号并训练它们。本文提出了一种适合FL的新型无监督的预训练方法,该方法旨在通过模型压缩来降低通信和计算成本。由于通信和计算成本高度取决于NN模型的数量,因此减少量的情况下而不降低模型性能可以降低这些成本。提出的预训练方法利用未标记的数据,预计将从Internet或数据存储库中获得的数据比标记的数据更容易获得。提出方法的关键思想是使用基于彩票假设的未标记数据从原始NN获得``良好''子网。所提出的方法使用未标记的数据使用Denoising Auto编码器训练原始模型,然后修剪原始模型的小型参数,以生成一个小而良好的子网。使用图像分类任务评估所提出的方法。结果表明,与以前的测试准确性相比,所提出的方法需要35 \%的流量和计算时间。
Federated learning (FL) enables a neural network (NN) to be trained using privacy-sensitive data on mobile devices while retaining all the data on their local storages. However, FL asks the mobile devices to perform heavy communication and computation tasks, i.e., devices are requested to upload and download large-volume NN models and train them. This paper proposes a novel unsupervised pre-training method adapted for FL, which aims to reduce both the communication and computation costs through model compression. Since the communication and computation costs are highly dependent on the volume of NN models, reducing the volume without decreasing model performance can reduce these costs. The proposed pre-training method leverages unlabeled data, which is expected to be obtained from the Internet or data repository much more easily than labeled data. The key idea of the proposed method is to obtain a ``good'' subnetwork from the original NN using the unlabeled data based on the lottery hypothesis. The proposed method trains an original model using a denoising auto encoder with the unlabeled data and then prunes small-magnitude parameters of the original model to generate a small but good subnetwork. The proposed method is evaluated using an image classification task. The results show that the proposed method requires 35\% less traffic and computation time than previous methods when achieving a certain test accuracy.