论文标题
佐治亚州南富尔顿市警察节拍设计的数据驱动优化
Data-Driven Optimization for Police Beat Design in South Fulton, Georgia
论文作者
论文摘要
我们使用预测性数据驱动的优化方法与南富尔顿警察局(SFPD)合作,在佐治亚州南富尔顿进行了警察巡逻队的殴打。由于城市发展和人口增长的迅速,现有的警察在1970年代进行的设计远非高效,这导致警务效率较低,长期911呼叫响应时间。我们平衡了不同城市地区的警察工作量,提高运营效率,并通过重新设计SFPD的节拍界限来减少911呼叫响应时间。我们将城市离散为小地理原子,这与我们的决策变量相对应;决定是将原子映射到警察行动的基本单位“ Beats”中。我们首先使用丰富的数据集(包括警察事件报告和美国人口普查数据)分析每个原子的工作量和趋势;然后,我们使用空间统计回归模型预测每个原子的未来警察工作量;最后,我们将最佳节拍设计制定为混合企业编程(MIP)程序,并在节拍的形状上具有连续性和紧凑的约束。由于其大规模和非凸性性质,使用模拟退火解决了优化问题。仿真结果表明,我们提出的BEAT设计可以将BEAT之间的工作负载差异显着减少90 \%。
We redesign the police patrol beat in South Fulton, Georgia, in collaboration with the South Fulton Police Department (SFPD), using a predictive data-driven optimization approach. Due to rapid urban development and population growth, the existing police beat design done in the 1970s was far from efficient, which leads to low policing efficiency and long 911 call response time. We balance the police workload among different city regions, improve operational efficiency, and reduce 911 call response time by redesigning beat boundaries for the SFPD. We discretize the city into small geographical atoms, which correspond to our decision variables; the decision is to map the atoms into "beats", the basic unit of the police operation. We first analyze workload and trend in each atom using the rich dataset, including police incidents reports and U.S. census data; We then predict future police workload for each atom using spatial statistical regression models; Lastly, we formulate the optimal beat design as a mixed-integer programming (MIP) program with continuity and compactness constraints on the beats' shape. The optimization problem is solved using simulated annealing due to its large-scale and non-convex nature. The simulation results suggest that our proposed beat design can reduce workload variance among beats significantly by over 90\%.