论文标题

基于张量分解的网络异常检测

Network Anomaly Detection based on Tensor Decomposition

论文作者

Streit, Ananda, Santos, Gustavo H. A., Leão, Rosa, Silva, Edmundo de Souza e, Menasché, Daniel, Towsley, Don

论文摘要

从网络测量值中检测时间序列中的异常问题的问题已被广泛研究,并且是一个基本重要性的话题。许多异常检测方法基于网络核心路由器收集的数据包检查,因此在计算成本和隐私方面具有缺点。我们提出了一种替代方法,其中不需要数据包标头检查。该方法基于考虑不同指标之间相关性的张量分解技术获得的正常子空间的提取。我们提出了一种新的在线张量分解方法,可以有效地跟踪正常子空间的变化。我们建议的另一个优点是获得的模型的解释性。通过将其应用于两个不同的示例,都使用住宅路由器收集的实际数据来说明该方法的灵活性。

The problem of detecting anomalies in time series from network measurements has been widely studied and is a topic of fundamental importance. Many anomaly detection methods are based on packet inspection collected at the network core routers, with consequent disadvantages in terms of computational cost and privacy. We propose an alternative method in which packet header inspection is not needed. The method is based on the extraction of a normal subspace obtained by the tensor decomposition technique considering the correlation between different metrics. We propose a new approach for online tensor decomposition where changes in the normal subspace can be tracked efficiently. Another advantage of our proposal is the interpretability of the obtained models. The flexibility of the method is illustrated by applying it to two distinct examples, both using actual data collected on residential routers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源