论文标题

边缘模式通过相称的多频驾驶操作

Edge mode manipulation through commensurate multifrequency driving

论文作者

Molignini, Paolo

论文摘要

我们探讨了相应的多频驱动方案对无旋转费米子拓扑1D系统中拓扑边缘模式稳定性的影响。使用Floquet理论,我们表明,所有拓扑相变量都可以根据有效驾驶参数映射到其单频率对应物。可以通过考虑逆分散中的差距封闭来解释这种巨大的简化。这些缝隙封闭被固定在高对称点上,所有有效的浮雕汉密尔顿人都崩溃到同一形式。尽管对于所有协议,所有拓扑相变的均一致一致,但差距大小和准光谱中的边缘模式的数量取决于所选的驾驶模式。从高度本地化到完全离域化,这引起了不同程度的本地化的各种边缘状态。然后,在不同的驾驶协议之间切换表明对拓扑边缘模式的定位和稳定性的动态控制,并可能在量子计算中进行应用。我们说明了我们对三个范式的费米子系统的发现 - 吉塔夫链,su-schrieffer-heeger模型和克鲁兹梯子,并演示了如何控制相应边缘状态的定位长度。

We explore the impact of commensurate multifrequency driving protocols on the stability of topological edge modes in topological 1D systems of spinless fermions. Using Floquet theory, we show that all the topological phase transitions can be mapped to their single-frequency counterparts in terms of effective driving parameters. This drastic simplification can be explained by considering the gap closures in the quasienergy dispersion. These gap closures are pinned to high-symmetry points, where all the effective Floquet Hamiltonians collapse to the same form. While for all protocols all topological phase transitions coincide, the gap size and the number of edge modes in the quasienergy spectra vary considerably depending on the chosen driving pattern. This gives rise to a full range of edge states with different degrees of localization, from highly localized to completely delocalized. Switching between different driving protocols then suggests a dynamical control of the localization and stability of topological edge modes, with possible applications in quantum computation. We illustrate our findings on three paradigmatic fermionic systems -- namely the Kitaev chain, the Su-Schrieffer-Heeger model, and the Creutz ladder, and demonstrate how to control the localization length of the corresponding edge states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源