论文标题
动态长度尺度,剪切驱动,二维中无摩擦磁盘的干扰
Dynamic length scales in athermal, shear-driven, jamming of frictionless disks in two dimensions
论文作者
论文摘要
我们进行了数值模拟,以二维为准,易剪切,bidisperse,无摩擦磁盘。从适当定义的速度相关函数中,我们确定有两个不同的长度尺度,$ξ$和$ \ ell $,因为堵塞过渡已接近。我们使用关键的缩放ANSATZ对相关函数进行分析,并认为长度较高的$ \ ell $是危险无关的缩放变量的结果,并且是$ξ$,它是确定系统粘度差异的相关长度,因为在液体液相中,系统粘度的差异接近。我们发现$ξ\ sim(ϕ_j-ϕ)^{ - ν} $与关键指数$ν= 1 $脱离。我们提供的证据表明,$ξ$测量粒子速度场旋转中波动的长度尺度,而$ \ ell $测量速度场差异中波动的长度尺度。
We carry our numerical simulations of athermally sheared, bidisperse, frictionless disks in two dimensions. From an appropriately defined velocity correlation function, we determine that there are two diverging length scales, $ξ$ and $\ell$, as the jamming transition is approached. We analyze our results using a critical scaling ansatz for the correlation function, and argue that the more divergent length $\ell$ is a consequence of a dangerous irrelevant scaling variable, and that it is $ξ$ which is the correlation length that determines the divergence of the system viscosity as jamming is approached from below in the liquid phase. We find that $ξ\sim (ϕ_J-ϕ)^{-ν}$ diverges with the critical exponent $ν=1$. We provide evidence that $ξ$ measures the length scale of fluctuations in the rotation of the particle velocity field, while $\ell$ measures the length scale of fluctuations in the divergence of the velocity field.