论文标题
用于课堂学习的生成功能重播
Generative Feature Replay For Class-Incremental Learning
论文作者
论文摘要
人类能够学习新任务而不会忘记以前的任务,而神经网络由于灾难性的忘记在新任务和以前学习的任务之间而失败。我们考虑一个类插入设置,这意味着任务ID在推理时间是未知的。新旧班之间的不平衡通常会导致网络偏向最新的阶层。可以通过存储以前任务的示例或使用图像重播方法来解决此不平衡问题。但是,后者只能应用于玩具数据集,因为复杂数据集的图像生成是一个困难的问题。 我们建议基于生成特征重播的不平衡问题的解决方案,这不需要任何示例。为此,我们将网络分为两个部分:特征提取器和一个分类器。为了防止忘记,我们将分类器中的生成功能重播与功能提取器中的特征蒸馏相结合。通过特征生成,我们的方法降低了生成重播的复杂性,并防止了不平衡问题。我们的方法在计算上有效,可扩展到大型数据集。实验证实,我们的方法在CIFAR-100和Imagenet上实现了最先进的结果,而仅需要基于示例的持续学习所需的一小部分存储。可在\ url {https://github.com/xialeiliu/gfr-il}上获得代码。
Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem. We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning. Code available at \url{https://github.com/xialeiliu/GFR-IL}.