论文标题

计算几何问题的量子算法

Quantum algorithms for computational geometry problems

论文作者

Ambainis, Andris, Larka, Nikita

论文摘要

我们研究计算几何学问题的量子算法,例如3线问题。在此问题中,我们给了我们一组行,并要求我们找到一个至少$ 3 $的行的观点。众所周知,3 s-on-3线和许多其他计算几何问题是3sum-hard。也就是说,在经典上解决它们需要时间$ω(n^{2-o(1)})$,除非对于众所周知的3sum问题有更快的算法(在其中为我们提供了$ n $ integers $ s $ s $ s $ s $,并且必须确定是否存在$ a,b,c \ in s $ a + a + b + b + c = 0 $)。量子,可以使用Grover的量子搜索算法在时间$ o(n \ log n)$中解决3sum。这导致了一个问题:我们可以在$ o(n^c)$ time Quantumally中解决$ o(n^c)$ c <2 $中的$ o(n^c)中的其他3sum-hard问题吗?我们肯定地回答了这个问题,通过构建一种量子算法,该算法在时间$ o(n^{1 + o(1)})$中求解point-on-3线。该算法结合了递归的振幅扩增和几何思想的使用。我们表明,对于许多3sum-Hard几何问题,相同的想法给出了$ O(n^{1 + o(1))$ time算法。

We study quantum algorithms for problems in computational geometry, such as POINT-ON-3-LINES problem. In this problem, we are given a set of lines and we are asked to find a point that lies on at least $3$ of these lines. POINT-ON-3-LINES and many other computational geometry problems are known to be 3SUM-HARD. That is, solving them classically requires time $Ω(n^{2-o(1)})$, unless there is faster algorithm for the well known 3SUM problem (in which we are given a set $S$ of $n$ integers and have to determine if there are $a, b, c \in S$ such that $a + b + c = 0$). Quantumly, 3SUM can be solved in time $O(n \log n)$ using Grover's quantum search algorithm. This leads to a question: can we solve POINT-ON-3-LINES and other 3SUM-HARD problems in $O(n^c)$ time quantumly, for $c<2$? We answer this question affirmatively, by constructing a quantum algorithm that solves POINT-ON-3-LINES in time $O(n^{1 + o(1)})$. The algorithm combines recursive use of amplitude amplification with geometrical ideas. We show that the same ideas give $O(n^{1 + o(1)})$ time algorithm for many 3SUM-HARD geometrical problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源