论文标题
Bohr--Rogosinski的不平等现象,用于有限的分析功能
Bohr--Rogosinski inequalities for bounded analytic functions
论文作者
论文摘要
在本文中,我们首先考虑了分析功能的Rogosinski不等式的另一个版本$ f(z)= \ sum_ {n = 0}^\ int disk $ | z |中<1 $,其中我们替换了系数$ a_n $ $(n = 0,1,\ ldots,n)$ the Power Series的衍生物$ f^{(n)}(z)/n!$(n = 0,1,\ ldots,n)$。其次,我们获得了经典的Bohr不平等现象的改进版本和Bohr的不平等,用于$ f = H + \ overline {g} $的谐波映射,其中分析部分$ h $由$ 1 $和$ | g'(z)| \ le k | h'(z)| $ in $ | z | <1 $,对于[0,1] $中的一些$ k \。
In this paper we first consider another version of the Rogosinski inequality for analytic functions $f(z)=\sum_{n=0}^\infty a_nz^n$ in the unit disk $|z| < 1$, in which we replace the coefficients $a_n$ $(n= 0,1,\ldots ,N)$ of the power series by the derivatives $f^{(n)}(z)/n!$ $(n= 0,1,\ldots ,N)$. Secondly, we obtain improved versions of the classical Bohr inequality and Bohr's inequality for the harmonic mappings of the form $f = h + \overline{g}$, where the analytic part $h$ is bounded by $1$ and that $|g'(z)| \le k|h'(z)|$ in $|z| < 1$ and for some $k \in [0,1]$.