论文标题
稳健的基于频率的结构提取
Robust Frequency-Based Structure Extraction
论文作者
论文摘要
最先进的映射算法可以产生高质量的地图。但是,它们仍然容易受到杂物和离群值的影响,这可能会影响地图质量,从而阻碍了机器人的性能,并进一步地图处理以使对环境的语义理解。本文介绍了Rose,这是一种在机器人图中建筑级结构检测的方法。 Rose利用了这样一个事实,即室内环境通常沿有限的方向包含墙壁和直线元素。因此,度量图通常具有一组主要方向。玫瑰提取这些方向,并使用此信息将地图分割为结构,并通过过滤频域中的地图(在映射应用程序中实质上未充分利用的方法)。以这种方式去除混乱,使墙壁检测(例如,使用霍夫变换)更强大。我们的实验表明,(1)在混乱环境中,玫瑰在整理中的应用可以大大改善结构特征检索(例如墙壁),(2)玫瑰可以成功地区分地图中的杂物和结构,即使用大量的噪声和(3)玫瑰可以数值评估地图中的结构量。
State of the art mapping algorithms can produce high-quality maps. However, they are still vulnerable to clutter and outliers which can affect map quality and in consequence hinder the performance of a robot, and further map processing for semantic understanding of the environment. This paper presents ROSE, a method for building-level structure detection in robotic maps. ROSE exploits the fact that indoor environments usually contain walls and straight-line elements along a limited set of orientations. Therefore metric maps often have a set of dominant directions. ROSE extracts these directions and uses this information to segment the map into structure and clutter through filtering the map in the frequency domain (an approach substantially underutilised in the mapping applications). Removing the clutter in this way makes wall detection (e.g. using the Hough transform) more robust. Our experiments demonstrate that (1) the application of ROSE for decluttering can substantially improve structural feature retrieval (e.g., walls) in cluttered environments, (2) ROSE can successfully distinguish between clutter and structure in the map even with substantial amount of noise and (3) ROSE can numerically assess the amount of structure in the map.