论文标题
阿贝利亚品种中一般超曲面的规范图
Canonical Maps of general Hypersurfaces in Abelian Varieties
论文作者
论文摘要
本文的主要理论是,对于一对(a,x)的一般$(a,x)$(ample)hypersurface $ x $ in Abelian品种中的$ a $,如果$ x $给出的偏光不primplation,则规范地图$φ_x$ $ x $是birational of tomational of thrimations of the Imagation of thrimations birational(即pfaffian $ d $ $ d $ $ $ $ 1 $)。 我们还表明,设置$ g = dim(a)$,而让$ d $是$ x $给出的两极分化的pfaffian,那么,如果$ x $且$ x $很光滑并且$$φ_x:x \ rightarrow \ mathbb {p}^{n:= g + d-2} $ G + D-2 \ GEQ 2 \ DIM(X) + 1. $ 我们还制定了以下有趣的猜想,这是由第二作者的工作激励的:如果$ d \ geq g + 1,$,那么,对于一般对$(a,x)$,$φ_x$是一个嵌入。
The main theorem of this paper is that, for a general pair $(A,X)$ of an (ample) Hypersurface $X$ in an Abelian Variety $A$, the canonical map $Φ_X$ of $X$ is birational onto its image if the polarization given by $X$ is not principal (i.e., its Pfaffian $d$ is not equal to $1$). We also show that, setting $g = dim (A)$, and letting $d$ be the Pfaffian of the polarization given by $X$, then if $X$ is smooth and $$Φ_X : X \rightarrow \mathbb{P}^{N:=g+d-2}$$ is an embedding, then necessarily we have the inequality $ d \geq g + 1$, equivalent to $N : = g+d-2 \geq 2 \ dim(X) + 1.$ We also formulate the following interesting conjecture, motivated by work of the second author: if $ d \geq g + 1,$ then, for a general pair $(A,X)$, $Φ_X$ is an embedding.