论文标题

通过能量收获的异质移动边缘计算中的计算卸载

Computation Offloading in Heterogeneous Mobile Edge Computing with Energy Harvesting

论文作者

Zhang, Tian, Chen, Wei

论文摘要

能源收集辅助移动边缘计算(MEC)在计算密集型,对潜伏期敏感且渴望能量的情况下广泛应用了其广泛的应用。在本文中,从游戏理论的角度研究了具有能量收集的异质MEC系统中从多MD到多MEC-S的计算。目的是将包括通信时间,等待时间和处理时间组成的MD的平均响应时间最小化。为MDS和MEC-SS建立了M/G/1排队模型。 MDS之间的干扰,计算任务生成的随机性,收获的能量到达,无线通道状态,排队在MEC-S处排队以及MD的功率预算约束。制定了非合作计算卸载游戏。我们给出NASH平衡(NE)的定义和存在分析。此外,我们重建了MD的优化问题。提出并执行2步分解。因此,我们到达了一个一维搜索问题和一个大大缩小的子问题。我们可以通过寻求其Karush-Kuhn-Tucker(KKT)条件的有限解决方案来获得子问题的最佳解决方案。此后,设计了一种分布式NE定向迭代的最佳响应算法。进行仿真以说明收敛性能和参数效应。

Energy harvesting aided mobile edge computing (MEC) has gained much attention for its widespread application in the computation-intensive, latency-sensitive and energy-hungry scenario. In this paper, computation offloading from multi-MD to multi-MEC-s in heterogeneous MEC systems with energy harvesting is investigated from a game theoretic perspective. The objective is to minimize the average response time of an MD that consists of communication time, waiting time and processing time. M/G/1 queueing models are established for MDs and MEC-ss. The interference among MDs, the randomness in computation task generation, harvested energy arrival, wireless channel state, queueing at the MEC-s, and the power budget constraint of an MD are taken into consideration. A noncooperative computation offloading game is formulated. We give the definition and existence analysis of the Nash equilibrium (NE). Furthermore, we reconstruct the optimization problem of an MD. A 2-step decomposition is presented and performed. Thereby, we arrive at a one-dimensional search problem and a greatly shrunken sub-problem. We can obtain the optimal solution of the sub-problem by seeking the finite solutions of its Karush-Kuhn-Tucker (KKT) conditions. Thereafter, a distributive NE-orienting iterated best-response algorithm is designed. Simulations are carried out to illustrate the convergence performance and parameter effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源