论文标题

平均曲率流的规范定理,以较高的consimension中的平均曲率流

A canonical neighborhood theorem for the mean curvature flow in higher codimension

论文作者

Naff, Keaton

论文摘要

在尺寸$ n \ geq 5 $中,我们证明了一个规范的邻域定理,用于$ \ mathbb {r}^n $ in $ \ mathbb {r}^n $满足pinching条件$ | \ frac {3(n+1)} {2n(n+2)},\ frac {1} {n-2} \} \}。$

In dimensions $n \geq 5$, we prove a canonical neighborhood theorem for the mean curvature flow of compact $n$-dimensional submanifolds in $\mathbb{R}^N$ satisfying a pinching condition $|A|^2 < c|H|^2$ for $c = \min \{ \frac{3(n+1)}{2n(n+2)},\frac{1}{n-2}\}.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源