论文标题

轻巧的CNN用于文本分类

Light-Weighted CNN for Text Classification

论文作者

Yadav, Ritu

论文摘要

对于管理,文件分为特定类别,为此,大多数组织都使用手动劳动。在当今的自动化时代,这项任务的手动努力是不合理的,为避免这种任务,我们在市场上有很多软件。但是,效率和最少的资源消耗是也引起竞争的焦点。通过机器将此类文档分类为指定的类提供了极好的帮助。分类技术之一是使用卷积神经网络(TextCNN)进行文本分类。 TextCNN使用多种尺寸的过滤器,如Googlenet中引入的开始层的情况。该网络提供了良好的准确性,但由于大量可训练的参数而导致高内存消耗。作为解决此问题的解决方案,我们基于可分离的卷积引入了一个全新的体系结构。可分离卷积的想法已经存在于图像分类领域,但尚未引入文本分类任务。在这种体系结构的帮助下,我们可以大大减少可训练的参数。

For management, documents are categorized into a specific category, and to do these, most of the organizations use manual labor. In today's automation era, manual efforts on such a task are not justified, and to avoid this, we have so many software out there in the market. However, efficiency and minimal resource consumption is the focal point which is also creating a competition. The categorization of such documents into specified classes by machine provides excellent help. One of categorization technique is text classification using a Convolutional neural network(TextCNN). TextCNN uses multiple sizes of filters, as in the case of the inception layer introduced in Googlenet. The network provides good accuracy but causes high memory consumption due to a large number of trainable parameters. As a solution to this problem, we introduced a whole new architecture based on separable convolution. The idea of separable convolution already exists in the field of image classification but not yet introduces to text classification tasks. With the help of this architecture, we can achieve a drastic reduction in trainable parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源