论文标题

量子重力,恒定负曲率和黑洞

Quantum Gravity, Constant Negative Curvatures, and Black Holes

论文作者

Klauder, John R.

论文摘要

出于量化的目的,经典的重力通常由规范变量表示,即公制$ g_ {ab}(x)$和动量$π^{cd}(x)$。规范量化要求将这些经典变量正确促进到量子运算符,根据迪拉克(Dirac)的说法,最喜欢的操作员应该是由形成笛卡尔坐标的经典变量引起的。可悲的是,在这种情况下,这是不可能的。但是,促进度量$ g_ {ab}(x)$的仿射量化功能和矩$π^c_d(x)\; [\equivπ^{ce}(x)\,g_ {de}(x)(x)(x)] $。它们属于恒定的曲率空间(即,而不是平坦的空间),而不是这些经典变量,而是属于恒定负曲线的空间。此功能甚至可能在黑洞中出现,这可能强烈指向量化重力的仿射量化方法。

For purposes of quantization, classical gravity is normally expressed by canonical variables, namely the metric $g_{ab}(x)$ and the momentum $π^{cd}(x)$. Canonical quantization requires a proper promotion of these classical variables to quantum operators, which, according to Dirac, the favored operators should be those arising from classical variables that formed Cartesian coordinates; sadly, in this case, that is not possible. However, an affine quantization features promoting the metric $g_{ab}(x)$ and the momentric $π^c_d(x)\;[\equiv π^{ce}(x) \,g_{de}(x)]$ to operators. Instead of these classical variables belonging to a constant zero curvature space (i.e., instead of a flat space), they belong to a space of constant negative curvatures. This feature may even have its appearance in black holes, which could strongly point toward an affine quantization approach to quantize gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源