论文标题
一般非线性电动力学的磁性黑洞的稳定性
Stability of magnetic black holes in general nonlinear electrodynamics
论文作者
论文摘要
我们研究了一般的非线性电动力学中磁性黑洞的扰动稳定性,其中拉格朗日是通过电磁场$ f_ {μν} $的场强的一般功能给出的,其hodge dual dual dual $ \ widetilde {f} {f} _ {μν} $。我们为黑洞的稳定性提供了足够的条件。我们将稳定条件应用于Bardeen的常规黑洞,Euler-Heisenberg理论中的黑洞和Born Infeld理论中的黑洞。结果,我们获得了Bardeen黑洞稳定性的足够条件,该孔限制了$ f_ {μν} \ widetilde {f}^{μν} $依赖性的拉格朗日。我们还表明,Euler-Heisenberg理论中的黑洞对于足够小的磁性电荷稳定。此外,即使包括$ f_ {μν} \ widetilde {f}^{μν} $依赖关系,我们也证明了黑洞在出生的进型电动力学中的稳定性。
We study the perturbative stability of magnetic black holes in a general class of nonlinear electrodynamics, where the Lagrangian is given by a general function of the field strength of electromagnetic field $F_{μν}$ and its Hodge dual $\widetilde{F}_{μν}$. We derive sufficient conditions for the stability of the black holes. We apply the stability conditions to Bardeen's regular black holes, black holes in Euler-Heisenberg theory, and black holes in Born-Infeld theory. As a result, we obtain a sufficient condition for the stability of Bardeen's black holes, which restricts $F_{μν}\widetilde{F}^{μν}$ dependence of the Lagrangian. We also show that black holes in Euler-Heisenberg theory are stable for a sufficiently small magnetic charge. Moreover, we prove the stability of black holes in the Born-Infeld electrodynamics even when including $F_{μν}\widetilde{F}^{μν}$ dependence.