论文标题
特殊的几何和滚动
Special Geometry and the Swampland
论文作者
论文摘要
在具有8个超对称性的4D有效重力理论的背景下,我们建议将几种弹态构想统一,strenghten和将几种swampland的猜想分成一个单一的陈述:结构标准,以Hodge理论为基础的结构定理建模。在其最抽象的形式中,新的Swampland标准适用于所有4D $ \ MATHCAL {n} = 2 $有效理论(具有量子一致的紫外线完成)是否是superSymmetry是\ emph {local}还是刚性:的确,它可以被认为是Seiberg-Witter-Winter GemeTry的更一般版本,并且在局部均具有更高的一般版本。 作为新的Swampland标准的第一个应用,我们表明,具有立方前电位的量子一致的$ \ Mathcal {n} = 2 $超级重力必定是较高的 - $ \ Mathcal {n} $ \ textsc {sugra}。更准确地说:它的模量空间是“魔术”类型的Shimura种类。在所有其他情况下,量子一致的特殊Kähler几何形状要么是复杂双曲空间$ su(1,m)/u(m)/u(m)$的算术商,要么没有\ emph {local}杀死向量。 应用于卡拉比(Calabi-Yau)3倍,这意味着(假设镜像对称性)代数几何形状中Oguiso-Sakurai猜想的有效性:所有Calabi-yau 3倍$ x $没有理性曲线的有效性,实际上,它们是阿贝尔品种的有限商。更一般地:$ x $的kähler模量在且仅当$ x $具有无限基本组时不会接受量子校正。在所有其他情况下,KählerOduli在(本质上)所有可能的程度(本质上)都进行了插入校正。
In the context of 4d effective gravity theories with 8 supersymmetries, we propose to unify, strenghten, and refine the several swampland conjectures into a single statement: the structural criterion, modelled on the structure theorem in Hodge theory. In its most abstract form the new swampland criterion applies to all 4d $\mathcal{N}=2$ effective theories (having a quantum-consistent UV completion) whether supersymmetry is \emph{local} or rigid: indeed it may be regarded as the more general version of Seiberg-Witten geometry which holds both in the rigid and local cases. As a first application of the new swampland criterion we show that a quantum-consistent $\mathcal{N}=2$ supergravity with a cubic pre-potential is necessarily a truncation of a higher-$\mathcal{N}$ \textsc{sugra}. More precisely: its moduli space is a Shimura variety of `magic' type. In all other cases a quantum-consistent special Kähler geometry is either an arithmetic quotient of the complex hyperbolic space $SU(1,m)/U(m)$ or has no \emph{local} Killing vector. Applied to Calabi-Yau 3-folds this result implies (assuming mirror symmetry) the validity of the Oguiso-Sakurai conjecture in Algebraic Geometry: all Calabi-Yau 3-folds $X$ without rational curves have Picard number $ρ=2,3$; in facts they are finite quotients of Abelian varieties. More generally: the Kähler moduli of $X$ do not receive quantum corrections if and only if $X$ has infinite fundamental group. In all other cases the Kähler moduli have instanton corrections in (essentially) all possible degrees.