论文标题
在环状极性代码和空间耦合的LDPC代码的爆发性能上
On Cyclic Polar Codes and The Burst Erasure Performance of Spatially-Coupled LDPC Codes
论文作者
论文摘要
极地代码于2009年引入,并被证明是在低复杂性的连续取消解码下实现任何二元输入无内存通道的对称能力。在本论文中,我们基于Galois Field Fourier变换的混合radix Cooley-tukey分解构建环形层代码。主要结果是:我们可以首次构建,编码和解码循环的极性代码,它们的区块长度是任意的;对于给定的目标块擦除速率,我们可以在可比较的区块长度上实现擦除通道上的代码速率明显更高。在仅具有错误的对称通道上,我们可以通过使用软决解码来比等效速率reed solomon代码相同的速率reed solomon代码。而且,由于代码是较高速率RS代码的子代码,因此,如果次优性能足以使应用程序作为较高解码速度的权衡,则可以使用RS解码器。 在2010年,显示出空间耦合的低密度平价检查(LDPC)代码接近二进制无内存通道的能力,渐近地使用了信念范围(BP)解码。在本论文中,我们对带有内存的二进制擦除通道上随机耦合的LDPC合奏的有限长度平均性能感兴趣。这项工作的重大贡献是:在各种情况下,对于爆发模式,块擦除概率($ p_b $)的紧密下限;范围的重点是实用场景,爆发完全影响了一个耦合代码之一;二进制擦除频道上的位擦除概率($ p_b $)的预期错误平台;并且,在擦除通道上的随机常规合奏的性能表征,单个向量描述了不同类型的尺寸 - $ 2 $停止集。使用蒙特卡洛模拟验证所有这些结果。
Polar codes were introduced in 2009 and proven to achieve the symmetric capacity of any binary-input discrete memoryless channel under low-complexity successive cancellation decoding. In this thesis, we construct cyclic polar codes based on a mixed-radix Cooley-Tukey decomposition of the Galois field Fourier transform. The main results are: we can, for the first time, construct, encode and decode polar codes that are cyclic, with their blocklength being arbitrary; for a given target block erasure rate, we can achieve significantly higher code rates on the erasure channel than the original polar codes, at comparable blocklengths; on the symmetric channel with only errors, we can perform much better than equivalent rate Reed-Solomon codes with the same blocklength, by using soft-decision decoding; and, since the codes are subcodes of higher rate RS codes, a RS decoder can be used if suboptimal performance suffices for the application as a trade-off for higher decoding speed. In 2010, it was shown that spatially-coupled low-density parity-check (LDPC) codes approach the capacity of binary memoryless channels, asymptotically, with belief-propagation (BP) decoding. In this thesis, we are interested in the finite length average performance of randomly coupled LDPC ensembles on binary erasure channels with memory. The significant contributions of this work are: tight lower bounds for the block erasure probability ($P_B$) under various scenarios for the burst pattern; bounds focused on practical scenarios where a burst affects exactly one of the coupled codes; expected error floor for the bit erasure probability ($P_b$) on the binary erasure channel; and, characterization of the performance of random regular ensembles, on erasure channels, with a single vector describing distinct types of size-$2$ stopping sets. All these results are verified using Monte-Carlo simulations.