论文标题

密度功能理论中紧凑型轨道的强大线性缩放优化

Robust linear-scaling optimization of compact localized orbitals in density functional theory

论文作者

Shi, Yifei, Karaguesian, Jessica, Khaliullin, Rustam Z.

论文摘要

紧凑的单电子轨道的局部性严格地根据基础功能的局部子集扩展,可以用密度功能理论(DFT)利用,以实现与系统大小的线性生长,在大规模模拟中至关重要。然而,尽管紧凑型轨道的优势仍然阻碍了基于轨道的线性线性缩放DFT方法的发展,因为在各种优化过程中很难找到电子基态的紧凑型表示。在这项工作中,我们表明,紧凑型轨道的缓慢和不稳定的优化源自紧凑型轨道的几乎不变的混合,这些轨道大多但并未完全定位在基本函数的相同子集中。我们还构建了一个近似的Hessian,可用于识别有问题的几乎不变的模式,并消除沿它们的变异优化,而无需在计算的能量中引入重大误差。这使我们能够创建一种具有低计算开销的线性缩放DFT方法,该方法在固定核计算和半导体和绝缘子的固定核计算和分子动力学模拟中被证明是有效且准确的。

Locality of compact one-electron orbitals expanded strictly in terms of local subsets of basis functions can be exploited in density functional theory (DFT) to achieve linear growth of computation time with systems size, crucial in large-scale simulations. However, despite advantages of compact orbitals the development of practical orbital-based linear-scaling DFT methods has long been hindered because a compact representation of the electronic ground state is difficult to find in a variational optimization procedure. In this work, we show that the slow and unstable optimization of compact orbitals originates from the nearly-invariant mixing of compact orbitals that are mostly but not completely localized within the same subsets of basis functions. We also construct an approximate Hessian that can be used to identify the problematic nearly-invariant modes and obviate the variational optimization along them without introducing significant errors into the computed energies. This enables us to create a linear-scaling DFT method with a low computational overhead that is demonstrated to be efficient and accurate in fixed-nuclei calculations and molecular dynamics simulations of semiconductors and insulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源