论文标题
Stas:自适应选择时空深度特征,以改善沉淀的偏差校正
STAS: Adaptive Selecting Spatio-Temporal Deep Features for Improving Bias Correction on Precipitation
论文作者
论文摘要
数值天气预测(NWP)可以通过预测灾难性降水来减少人类痛苦。世界上常用的NWP是欧洲中等范围的天气预报中心(EC)。但是,由于我们仍然没有完全了解降水的机制,因此有必要通过降低(BCOP)纠正EC预测,从而使EC经常有一些偏见。现有的BCOP患有有限的先前数据和固定时空(ST)量表。因此,我们提出了一个名为时空特征自动选择性(Stas)模型的端到端深度学习BCOP模型,通过ST特征选择机制(SFM/TFM)从EC中选择最佳ST规则性。给定不同的输入特征,这两种机制可以自动调整空间和时间尺度以进行校正。 EC公共数据集上的实验表明,与已发布的8种BCOP方法相比,Stas在BCOP的几个标准上显示了最先进的性能,称为威胁分数(TS)。此外,消融研究证明,SFM/TFM确实可以很好地提高BCOP的性能,尤其是在大降水方面。
Numerical Weather Prediction (NWP) can reduce human suffering by predicting disastrous precipitation in time. A commonly-used NWP in the world is the European Centre for medium-range weather forecasts (EC). However, it is necessary to correct EC forecast through Bias Correcting on Precipitation (BCoP) since we still have not fully understood the mechanism of precipitation, making EC often have some biases. The existing BCoPs suffers from limited prior data and the fixed Spatio-Temporal (ST) scale. We thus propose an end-to-end deep-learning BCoP model named Spatio-Temporal feature Auto-Selective (STAS) model to select optimal ST regularity from EC via the ST Feature-selective Mechanisms (SFM/TFM). Given different input features, these two mechanisms can automatically adjust the spatial and temporal scales for correcting. Experiments on an EC public dataset indicate that compared with 8 published BCoP methods, STAS shows state-of-the-art performance on several criteria of BCoP, named threat scores (TS). Further, ablation studies justify that the SFM/TFM indeed work well in boosting the performance of BCoP, especially on the heavy precipitation.