论文标题
具有优化模糊因子向量的模糊C均值的重建性能的增强
Augmentation of the Reconstruction Performance of Fuzzy C-Means with an Optimized Fuzzification Factor Vector
论文作者
论文摘要
信息颗粒已被认为是颗粒计算的基本结构(GRC)。作为一种有用的无监督学习技术,模糊的C均值(FCM)是构造信息颗粒的最常用方法之一。基于FCM的颗粒分解机制在GRC中起关键作用。在本文中,为了提高脱粒(重建)过程的质量,我们通过引入模糊因子(模糊因子矢量)的矢量来增强基于FCM的脱粒机制,并建立调整机制以修改原型和分区矩阵。该设计被认为是一个优化问题,它以重建标准为指导。在提出的方案中,初始分区矩阵和原型是由FCM生成的。然后引入模糊因子向量,以形成每个群集的适当模糊因子,以建立一个调整方案,以修改原型和分区矩阵。通过肉芽养成过程的监督学习模式,我们构建了模糊因子向量,原型和分区矩阵的复合目标函数。随后,采用粒子群优化(PSO)来优化模糊因子向量以完善原型并开发最佳分区矩阵。最后,增强了FCM算法的重建性能。我们对开发计划进行了详尽的分析。特别是,我们表明经典的FCM算法构成了所提出的方案的特殊情况。合成和公开数据集完成的实验表明,所提出的方法的表现优于通用数据重建方法。
Information granules have been considered to be the fundamental constructs of Granular Computing (GrC). As a useful unsupervised learning technique, Fuzzy C-Means (FCM) is one of the most frequently used methods to construct information granules. The FCM-based granulation-degranulation mechanism plays a pivotal role in GrC. In this paper, to enhance the quality of the degranulation (reconstruction) process, we augment the FCM-based degranulation mechanism by introducing a vector of fuzzification factors (fuzzification factor vector) and setting up an adjustment mechanism to modify the prototypes and the partition matrix. The design is regarded as an optimization problem, which is guided by a reconstruction criterion. In the proposed scheme, the initial partition matrix and prototypes are generated by the FCM. Then a fuzzification factor vector is introduced to form an appropriate fuzzification factor for each cluster to build up an adjustment scheme of modifying the prototypes and the partition matrix. With the supervised learning mode of the granulation-degranulation process, we construct a composite objective function of the fuzzification factor vector, the prototypes and the partition matrix. Subsequently, the particle swarm optimization (PSO) is employed to optimize the fuzzification factor vector to refine the prototypes and develop the optimal partition matrix. Finally, the reconstruction performance of the FCM algorithm is enhanced. We offer a thorough analysis of the developed scheme. In particular, we show that the classical FCM algorithm forms a special case of the proposed scheme. Experiments completed for both synthetic and publicly available datasets show that the proposed approach outperforms the generic data reconstruction approach.