论文标题

与应用程序的基于秘密共享的安全回归

Secret Sharing based Secure Regressions with Applications

论文作者

Chen, Chaochao, Li, Liang, Fang, Wenjing, Zhou, Jun, Wang, Li, Wang, Lei, Yang, Shuang, Liu, Alex, Wang, Hao

论文摘要

如今,不断扩大的数据的利用对Web技术产生了巨大影响,同时也引起了各种类型的安全问题。一方面,如果不同的组织能够以某种方式共享他们的数据以进行技术改进,则高度期待潜在的收益。另一方面,由于商业或社会学问题,数据持有人和数据提供商可能会出现数据安全问题。为了在技术改进和安全限制之间取得平衡,我们为多个数据持有人实施安全可扩展的协议,以训练线性回归和逻辑回归模型。我们基于秘密共享方案构建协议,该方案在应用程序中可扩展且有效。此外,我们提出的范式可以推广到任何安全的多方训练方案,其中仅使用矩阵求和和矩阵乘法。我们通过实验证明了我们的方法,该实验显示了我们提出的协议的可扩展性和效率,并最终介绍了其现实世界的应用。

Nowadays, the utilization of the ever expanding amount of data has made a huge impact on web technologies while also causing various types of security concerns. On one hand, potential gains are highly anticipated if different organizations could somehow collaboratively share their data for technological improvements. On the other hand, data security concerns may arise for both data holders and data providers due to commercial or sociological concerns. To make a balance between technical improvements and security limitations, we implement secure and scalable protocols for multiple data holders to train linear regression and logistic regression models. We build our protocols based on the secret sharing scheme, which is scalable and efficient in applications. Moreover, our proposed paradigm can be generalized to any secure multiparty training scenarios where only matrix summation and matrix multiplications are used. We demonstrate our approach by experiments which shows the scalability and efficiency of our proposed protocols, and finally present its real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源