论文标题
飞机$ r $ - 同步及其可纠正性属性
Plane $R$-paths and their rectifiability property
论文作者
论文摘要
考虑了一个面向飞机的连续路径家族,具体取决于固定的实际正数$ r $。对于路径上的任何点$ x $,先前的点都来自任何半径$ r $,在$ x $的内部正常圆形的适当切线圆锥上,以$ x $为$ x $。这些路径是嵌套$ r $的嵌套家庭的本地下降曲线。避免任何平滑性要求,我们获得角度估计,而不是交点属性。之后,我们能够估算此曲线的Lenght和绕道。
A family of plane oriented continuous paths depending on a fixed real positive number $R$ is considered. For any point $x$ on the path, the previous points lie out of any circle of radius $R$ having at $x$ interior normal in a suitable tangent cone to the path at $x$. These paths are locally descent curves of a nested family sets of reach $R$. Avoiding any smoothness requirements, we get angle estimate and not intersection property. Afterwards we are able to estimate the lenght and detour of this curve.