论文标题

拓扑量子通过加固学习

Topological Quantum Compiling with Reinforcement Learning

论文作者

Zhang, Yuan-Hang, Zheng, Pei-Lin, Zhang, Yi, Deng, Dong-Ling

论文摘要

量子编译是将量子算法分解为一系列兼容硬件兼容命令或基本门的过程,对于量子计算至关重要。我们基于深度强化学习引入了一种有效的算法,该算法将任意的单量门门编译为有限通用集合的一系列基本门。它以给定的精度生成了近乎最佳的门序序,通常适用于各种情况,独立于硬件可行的通用集,不使用辅助量子台。为了进行具体性,我们将此算法应用于斐波那契人拓扑编译的情况,并获得了任意单位单位的近乎最佳的编织序列。我们的算法可能会解决其他具有挑战性的量子离散问题,从而为在量子物理学中引人入胜的新途径开辟了新的途径。

Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-compatible commands or elementary gates, is of fundamental importance for quantum computing. We introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate sequences with given accuracy and is generally applicable to various scenarios, independent of the hardware-feasible universal set and free from using ancillary qubits. For concreteness, we apply this algorithm to the case of topological compiling of Fibonacci anyons and obtain near-optimal braiding sequences for arbitrary single-qubit unitaries. Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源