论文标题

非本地特征值问题中的爆炸现象:$ l^1 $和$ l^2 $相遇时

Blow-up phenomena in nonlocal eigenvalue problems: when theories of $L^1$ and $L^2$ meet

论文作者

Chan, Hardy, Gómez-Castro, David, Vázquez, Juan Luis

论文摘要

我们开发了一种非常弱的解决方案的线性理论,用于非本地特征值问题$ \ MATHCAL l u =λu + f $,涉及具有均匀dirichlet外部条件的有界域中,带有有或没有单数边界数据的有界域中的界面差异算子。我们考虑对绿色功能和操作员的标准特征性的轻度假设。想到的主要例子是分数拉普拉斯运营商。 如果没有单数边界数据,并且当$λ$不是操作员的特征值时,我们构建了一个$ l^2 $ - 项目的解决方案理论,我们将其扩展到操作员$ \ Mathcal l $的最佳数据空间。我们提出了Fredholm的替代方案,因为$λ$趋向于特征空间,并表征了可能的爆破极限。主要的新成分是将正交性转移到测试功能。 然后,我们将结果扩展到奇异的边界数据,并研究所谓的大型解决方案,这些解决方案在边界处爆炸。对于这个问题,我们表明,对于任何常规值$λ$,都存在边界和内部常规的“大算法”。随着$λ$接近频谱的值,我们还能够在这种情况下提出弗雷德姆替代方案。 当操作员为$ l^2 $阳性时,我们还获得了加权$ l^1 $解决方案的最大原则。由于第一个特征值从下面接近,因此它产生了全球爆破现象。 最后,当分数指数在绿色功能的温和假设下接近一个时,我们恢复了经典的迪里奇问题。因此,“大征本函数”代表了纯粹的非局部现象。

We develop a linear theory of very weak solutions for nonlocal eigenvalue problems $\mathcal L u = λu + f$ involving integro-differential operators posed in bounded domains with homogeneous Dirichlet exterior condition, with and without singular boundary data. We consider mild hypotheses on the Green's function and the standard eigenbasis of the operator. The main examples in mind are the fractional Laplacian operators. Without singular boundary datum and when $λ$ is not an eigenvalue of the operator, we construct an $L^2$-projected theory of solutions, which we extend to the optimal space of data for the operator $\mathcal L$. We present a Fredholm alternative as $λ$ tends to the eigenspace and characterise the possible blow-up limit. The main new ingredient is the transfer of orthogonality to the test function. We then extend the results to singular boundary data and study the so-called large solutions, which blow up at the boundary. For that problem we show that, for any regular value $λ$, there exist "large eigenfunctions" that are singular on the boundary and regular inside. We are also able to present a Fredholm alternative in this setting, as $λ$ approaches the values of the spectrum. We also obtain a maximum principle for weighted $L^1$ solutions when the operator is $L^2$-positive. It yields a global blow-up phenomenon as the first eigenvalue is approached from below. Finally, we recover the classical Dirichlet problem as the fractional exponent approaches one under mild assumptions on the Green's functions. Thus "large eigenfunctions" represent a purely nonlocal phenomenon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源