论文标题
从平衡的量子线的二阶功能重新归一化组方法
Second-order functional renormalization group approach to quantum wires out of equilibrium
论文作者
论文摘要
功能重归其化组(FRG)为研究低维电子系统中的相关性提供了一种灵活的工具。在本文中,我们提出了一种新型的FRG方法,用于从热平衡中量量子线的稳态。我们的方法在两粒子相互作用中最多可正确,并解释了非弹性散射。我们将流动方程式的半分析溶液与MPI并行化技术相结合,这使我们能够处理多达60个晶格位点的系统。均衡极限已得到充分理解,并用作基准。我们计算有效的分布函数,状态的局部密度以及稳态电流,并证明所有这些数量都在很大程度上取决于FRG中使用的临界值的选择。缺乏物理论证来阻碍非平衡性的影响,而不是出现一定的临界值,以及出现了世俗的高阶术语,而世俗的高阶术语仅部分包含在我们的方法中。这表明了直接的二阶FRG方案不足,即在没有自然截止选择的情况下,以平衡研究了相互作用的量子线。
The functional renormalization group (FRG) provides a flexible tool to study correlations in low-dimensional electronic systems. In this paper, we present a novel FRG approach to the steady-state of quantum wires out of thermal equilibrium. Our method is correct up to second order in the two-particle interaction and accounts for inelastic scattering. We combine semi-analytic solutions of the flow equations with MPI parallelization techniques, which allows us to treat systems of up to 60 lattice sites. The equilibrium limit is well-understood and serves as a benchmark. We compute effective distribution functions, the local density of states, and the steady-state current and demonstrate that all of these quantities depend strongly on the choice of the cutoff employed within the FRG. Non-equilibrium is plagued by the lack of physical arguments in favor of a certain cutoff as well as by the appearance of secular higher-order terms which are only partly included in our approach. This demonstrates the inadequacy of a straightforward second-order FRG scheme to study interacting quantum wires out of equilibrium in the absence of a natural cutoff choice.