论文标题
使用稀疏建模的外射线的全局映射
Global Mapping of an Exo-Earth using Sparse Modeling
论文作者
论文摘要
我们开发了一种新的检索方案,用于从散射光曲线获得二维表面图。在我们的方案中,采用了稀疏建模中使用的技术之一,这是找到最佳映射的技术之一。我们将新方法应用于模拟地球的散射光曲线,并发现与使用Tikhonov正则化的方法相比,新方法提供了重建图的空间分辨率。我们还将新方法应用于在Fan等人提出的为期两年的DSCOVR/EPIC观察中获得的观察到的地球的散射光曲线。 (2019)。 Tikhonov正则化的方法使我们能够解决北美,非洲,欧亚大陆和南极洲。除此之外,稀疏的建模还确定了南美和澳大利亚,尽管它未能找到南极的,这可能是由于杆子上的观察力较低所致。此外,所提出的方法能够从5 pc的假设地球外球星的噪声注入光曲线中检索地图,并从8米望远镜的可鸣刺图像中预期噪声水平。我们发现,稀疏建模可以使用2年的时间间隔为澳大利亚,非洲 - 欧亚,北美和南美洲解决。我们的研究表明,在未来直接成像任务中,例如大型UV/光学/IR测量师(Luvoir),可以使用稀疏建模和多上述观察与每月1天或5天的组合来识别地球类似物的主要特征。
We develop a new retrieval scheme for obtaining two-dimensional surface maps of exoplanets from scattered light curves. In our scheme, the combination of the L1-norm and Total Squared Variation, which is one of the techniques used in sparse modeling, is adopted to find the optimal map. We apply the new method to simulated scattered light curves of the Earth, and find that the new method provides a better spatial resolution of the reconstructed map than those using Tikhonov regularization. We also apply the new method to observed scattered light curves of the Earth obtained during the two-year DSCOVR/EPIC observations presented by Fan et al. (2019). The method with Tikhonov regularization enables us to resolve North America, Africa, Eurasia, and Antarctica. In addition to that, the sparse modeling identifies South America and Australia, although it fails to find the Antarctica maybe due to low observational weights on the poles. Besides, the proposed method is capable of retrieving maps from noise injected light curves of a hypothetical Earth-like exoplanet at 5 pc with noise level expected from coronagraphic images from a 8-m telescope. We find that the sparse modeling resolves Australia, Afro-Eurasia, North America, and South America using 2-year observation with a time interval of one month. Our study shows that the combination of sparse modeling and multi-epoch observation with 1 day or 5 days per month can be used to identify main features of an Earth analog in future direct imaging missions such as the Large UV/Optical/IR Surveyor (LUVOIR).