论文标题

用于联合独立子空间分析的MM算法,并应用于盲目的单一和多源提取

MM Algorithms for Joint Independent Subspace Analysis with Application to Blind Single and Multi-Source Extraction

论文作者

Scheibler, Robin, Ono, Nobutaka

论文摘要

在这项工作中,我们提出了用于联合独立子空间分析(JISA)的有效算法,该算法是独立组件分析的扩展,该分析涉及并行混合物,在此并非所有组件都是独立的。我们基于大型最小化(MM)优化技术(JISA-MM)得出了JISA的算法框架。我们使用众所周知的不平等来用于超级高斯来源,从而得出观察到的数据的负模样的替代功能。该替代函数的最小化导致了混合精确的对角度化问题的变体,但是将多个解散矢量分组在一起。本着基于辅助函数的独立矢量分析(Auxiva)的精神,我们提出了几个更新,这些更新可以交替应用于一个或共同应用于两组的将矢量分解。 最近,一个或多个来源的盲目提取已成为利用较大麦克风阵列以实现更好分离的合理方式。特别是,已经提出了多种MM算法,以用于过度确定的IVA(Overiva)。通过应用JISA-MM,我们不仅能够以一般的方式重新启动它们,还可以找到几种新算法。我们运行广泛的数值实验来评估其性能,并将其与Auxiva进行完全分离。我们发现,使用两个来源的成对更新或一个来源和背景的算法具有最快的收敛性,并且能够快速,精确地将目标源与背景分开。此外,我们表征了在大量噪声,混响和背景不匹配条件下所有算法的性能。

In this work, we propose efficient algorithms for joint independent subspace analysis (JISA), an extension of independent component analysis that deals with parallel mixtures, where not all the components are independent. We derive an algorithmic framework for JISA based on the majorization-minimization (MM) optimization technique (JISA-MM). We use a well-known inequality for super-Gaussian sources to derive a surrogate function of the negative log-likelihood of the observed data. The minimization of this surrogate function leads to a variant of the hybrid exact-approximate diagonalization problem, but where multiple demixing vectors are grouped together. In the spirit of auxiliary function based independent vector analysis (AuxIVA), we propose several updates that can be applied alternately to one, or jointly to two, groups of demixing vectors. Recently, blind extraction of one or more sources has gained interest as a reasonable way of exploiting larger microphone arrays to achieve better separation. In particular, several MM algorithms have been proposed for overdetermined IVA (OverIVA). By applying JISA-MM, we are not only able to rederive these in a general manner, but also find several new algorithms. We run extensive numerical experiments to evaluate their performance, and compare it to that of full separation with AuxIVA. We find that algorithms using pairwise updates of two sources, or of one source and the background have the fastest convergence, and are able to separate target sources quickly and precisely from the background. In addition, we characterize the performance of all algorithms under a large number of noise, reverberation, and background mismatch conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源