论文标题

带有拉伸指数尾巴的分支随机步行的最大步行

The maximum of a branching random walk with stretched exponential tails

论文作者

Dyszewski, Piotr, Gantert, Nina, Höfelsauer, Thomas

论文摘要

在台阶尺寸分布具有拉伸指数尾巴,尤其是没有有限的指数矩时,我们研究了一维的分支随机步行。步长$ x $的尾巴衰减为$ \ mathbb {p} [x \ geq t] \ sim a \ exp(-λt^r)对于某些常数$ a,λ> 0 $,其中$ r \ in(0,1)$。我们详细描述了最右边粒子位置的渐近行为,证明了几乎纯净的限制定理,法律收敛和一些积分测试。限制定理揭示了有趣的差异,这两个制度$ r \ in(0,2/3)$和$ r \ in(2/3,1)$,在边界案例$ r = 2/3 $中却有不同的限制。

We study the one-dimensional branching random walk in the case when the step size distribution has a stretched exponential tail, and, in particular, no finite exponential moments. The tail of the step size $X$ decays as $\mathbb{P}[X \geq t] \sim a \exp(-λt^r)$ for some constants $a, λ> 0$ where $r \in (0,1)$. We give a detailed description of the asymptotic behaviour of the position of the rightmost particle, proving almost-sure limit theorems, convergence in law and some integral tests. The limit theorems reveal interesting differences betweens the two regimes $ r \in (0, 2/3)$ and $ r \in (2/3, 1)$, with yet different limits in the boundary case $r = 2/3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源